Complex Vector

 
Use a simple vector you created before to create two other more complex vectors with
   A) Memory allocation that doubles size of memory when end reached, and 1/2’s memory when the size reaches 1/4.
   B) Implemented with a singularly linked list.
Main.cpp
#include <cstdlib>
#include “SimpleVector.h”
//System Libraries
#include <iostream> //Input/Output Library
using namespace std;
//User Libraries
//Global Constants, no Global Variables are allowed
//Math/Physics/Conversions/Higher Dimensions – i.e. PI, e, etc…
//Function Prototypes
void fillVec(SimpleVector<int> &);
void addVec(SimpleVector<int> &);
void delVec(SimpleVector<int> &);
void prntVec(SimpleVector<int> &,int);
//Execution Begins Here!
int main(int argc, char** argv) {
    //Declare Variables
    int size;
    //Read in the size
    cout<<“What size vector to test?”<<endl;
    cin>>size;
    SimpleVector<int> sv(size);
    //Initialize or input i.e. set variable values
    fillVec(sv);
    //Display the outputs
    prntVec(sv,10);
    //Add and subtract from the vector
    addVec(sv);
    //Display the outputs
    prntVec(sv,10);
    //Add and subtract from the vector
    delVec(sv);
    //Display the outputs
    prntVec(sv,10);
    //Exit stage right or left!
    return 0;
}
void addVec(SimpleVector<int> &sv){
    int add=sv.size()*0.1;
    for(int i=1;i<=add;i++){
        sv.push_front(i+add-1);
        sv.push_back(i-add);
    }
}
void delVec(SimpleVector<int> &sv){
    int del=sv.size()*0.2;
    for(int i=1;i<=del;i++){
        sv.pop_front();
        sv.pop_back();
    }
}
void fillVec(SimpleVector<int> &sv){
    for(int i=0;i<sv.size();i++){
        sv[i]=i%10;
    }
}
void prntVec(SimpleVector<int> &sv,int n){
    cout<<endl;
    for(int i=0;i<sv.size();i++){
        cout<<sv[i]<<” “;
        if(i%n==(n-1))cout<<endl;
    }
    cout<<endl;
}
SimpleVector.h
// SimpleVector class template
#ifndef SIMPLEVECTOR_H
#define SIMPLEVECTOR_H
#include <iostream>
#include <new>       // Needed for bad_alloc exception
#include <cstdlib>   // Needed for the exit function
using namespace std;
template <class T>
class SimpleVector
{
private:
   T *aptr;          // To point to the allocated array
   int arraySize;    // Number of elements in the array
   void memError(); // Handles memory allocation errors
   void subError(); // Handles subscripts out of range
public:
   // Default constructor
   SimpleVector()
      { aptr = 0; arraySize = 0;}
   // Constructor declaration
   SimpleVector(int);
   // Copy constructor declaration
   SimpleVector(const SimpleVector &);
   // Destructor declaration
   ~SimpleVector();
   //Adding and subtracting from the Vector
   void push_front(T);
   void push_back(T);
   T    pop_front();
   T    pop_back();
   // Accessor to return the array size
   int size() const
      { return arraySize; }
   // Accessor to return a specific element
   T getElementAt(int position);
   // Overloaded [] operator declaration
   T &operator[](const int &);
};
// Constructor for SimpleVector class. Sets the size of the *
// array and allocates memory for it.                       *
template <class T>
SimpleVector<T>::SimpleVector(int s)
{
   arraySize = s;
   // Allocate memory for the array.
   try
   {
      aptr = new T [s];
   }
   catch (bad_alloc)
   {
      memError();
   }
   // Initialize the array.
   for (int count = 0; count < arraySize; count++)
      *(aptr + count) = 0;
}
// Copy Constructor for SimpleVector class. *
template <class T>
SimpleVector<T>::SimpleVector(const SimpleVector &obj)
{
   // Copy the array size.
   arraySize = obj.arraySize;
 
   // Allocate memory for the array.
   aptr = new T [arraySize];
   if (aptr == 0)
      memError();
 
   // Copy the elements of obj’s array.
   for(int count = 0; count < arraySize; count++)
      *(aptr + count) = *(obj.aptr + count);
}
// Add 1 or Delete 1 front or back for SimpleVector class. *
template<class T>
void SimpleVector<T>::push_front(T val){
    // Allocate memory for the array.
    T *newarr = 0;
    try
    {
        newarr = new T [arraySize + 1];
    }
    catch (bad_alloc)
    {
        memError();
    }
    *(newarr) = val;//Add value to the front of the new array
    // Copy previous array contents.
    arraySize++;//Increment array size
    for (int count = 1; count < arraySize; count++)
        *(newarr + count) = *(aptr + count – 1);
    delete aptr;//Delete previous array
    aptr = newarr;
}
template<class T>
void SimpleVector<T>::push_back(T val){
    // Allocate memory for the array.
    T *newarr = 0;
    try
    {
        newarr = new T [arraySize + 1];
    }
    catch (bad_alloc)
    {
        memError();
    }
    // Copy previous array contents.
    for (int count = 0; count < arraySize; count++)
        *(newarr + count) = *(aptr + count);
    *(newarr + arraySize) = val;//Add value at back of the array
    arraySize++;//Increment array size
    delete aptr;//Delete previous array
    aptr = newarr;
}
template<class T>
T SimpleVector<T>::pop_front(){
    T dummy = 0;
    if(arraySize != 0)//If array is not empty then only pop
    {
        dummy = *aptr;
        if(arraySize == 1){
            delete aptr;
            aptr = 0;
        }
        else {
            // Allocate memory for the array.
            T *newarr = 0;
            try {
                newarr = new T[arraySize – 1];
            }
            catch (bad_alloc) {
                memError();
            }
            // Copy previous array contents.
            for (int count = 1; count < arraySize; count++)
                *(newarr + count – 1) = *(aptr + count);
            delete aptr;//Delete previous array
            aptr = newarr;
        }
        arraySize–;//Decrease array size
    }
    return dummy;//Return popped value
}
template<class T>
T SimpleVector<T>::pop_back(){
    T dummy = 0;
    if(arraySize != 0)//If array is not empty then only pop
    {
        dummy = *(aptr + arraySize – 1);
        if(arraySize == 1){
            delete aptr;
            aptr = 0;
        }
        else {
            // Allocate memory for the array.
            T *newarr = 0;
            try {
                newarr = new T[arraySize – 1];
            }
            catch (bad_alloc) {
                memError();
            }
            // Copy previous array contents.
            for (int count = 0; count < arraySize – 1; count++)
                *(newarr + count) = *(aptr + count);
            delete aptr;//Delete previous array
            aptr = newarr;
        }
        arraySize–;//Decrease array size
    }
    return dummy;//Return popped value
}
//**************************************
// Destructor for SimpleVector class. *
//**************************************
template <class T>
SimpleVector<T>::~SimpleVector()
{
   if (arraySize > 0)
      delete [] aptr;
}
// memError function. Displays an error message and
// terminates the program when memory allocation fails.
template <class T>
void SimpleVector<T>::memError()
{
   cout << “ERROR:Cannot allocate memory.\n”;
   exit(EXIT_FAILURE);
}
// subError function. Displays an error message and         *
// terminates the program when a subscript is out of range. *
template <class T>
void SimpleVector<T>::subError()
{
   cout << “ERROR: Subscript out of range.\n”;
   exit(EXIT_FAILURE);
}
// getElementAt function. The argument is a subscript. *
// This function returns the value stored at the sub-   *
// cript in the array.                                  *
template <class T>
T SimpleVector<T>::getElementAt(int sub)
{
   if (sub < 0 || sub >= arraySize)
      subError();
   return aptr[sub];
}
// Overloaded [] operator. The argument is a subscript. *
// This function returns a reference to the element     *
// in the array indexed by the subscript.               *
template <class T>
T &SimpleVector<T>::operator[](const int &sub)
{
   if (sub < 0 || sub >= arraySize)
      subError();
   return aptr[sub];
}
#endif

Don't use plagiarized sources. Get Your Custom Essay on
Complex Vector
Just from $13/Page
Order Essay
Order a unique copy of this paper
(550 words)

Approximate price: $22

Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Order your essay today and save 25% with the discount code: COCONUTPlace Order
+
Live Chat+1(978) 822-0999EmailWhatsApp